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ABSTRACT 
 

A formalism for the calculation of the optical cross section of a deep 

impurity level in a covalently bonded semiconductor is developed.  This 

formalism, which is based upon quantum mechanical time dependent 

perturbation theory, assumes a tight binding representation for the bandstructure 

of the host semiconductor and models the deep level and its associated potential 

using the Hjalmarson theory of deep levels.  The optical cross sections for the 

deep levels associated with several impurities in selected semiconductors are 

calculated numerically using a semi-empirical tight binding bandstructure model 

as input into the formalism.  The chemical trends which emerge from these 

calculations are discussed. 
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CHAPTER I  
INTRODUCTION 

Many of a semiconductor's useful electronic properties are traceable to the 

presence of impurities in the material.  Of particular interest in this thesis are 

those impurities which produce energy levels near the center of the fundamental 

bandgap—the so-called deep level impurities that enable the semiconductor to 

be used in device applications, such as switching and laser applications. 

Although controlling such impurities is of primary concern during semiconductor 

device processing, the impurities must first be located and identified. 

Understanding the properties of deep levels is important because 

controlling them will help to control the lifetime of carriers, since they act as 

recombination centers for the charge carriers (1, 2).  The most efficient 

recombination takes place at levels near the middle of the bandgap.  In that case, 

the corresponding cross section becomes very large and the carrier lifetime of 

the free carriers becomes very small.  If large carrier lifetimes are required, deep 

level impurities must be avoided.  One device application of deep level impurities 

is to light emitting diodes, which owe their existence to these defects (3).  The 

deep levels associated with particular impurities determine the wavelength of the 

emitted light.  However, unwanted impurities can be the limiting factor for the 

device due to non-radiative recombination enhancement (2, 4). 

As a consequence of their importance, substantial theoretical efforts have 

been made to understand and predict the energies of deep level defects.  All of 

these theories, as well as a number of experimental techniques, have increased 

our understanding of such defects. 
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One means of observing a deep energy level in a semiconductor is 

through optical measurements.  In order to understand such measurements, the 

optical cross sections of the deep levels must be understood. 

This thesis develops a formalism for calculating this cross section and 

numerically studies the chemical trends in this quantity for several deep level 

impurities in the covalently bonded semiconductors Si, Ge, GaAs, GaP, A1P, and 

ZnTe.  The results are computed for deep levels transforming according to both 

Al (s-like) and T2 (p-like) symmetries induced by substitutional impurities in the 

selected materials. 

Deep level impurities under optical excitation are shown schematically in 

Figure 1.1.  Case 1 occurs when an electron of energy E is driven from an initially 

full valence band to a deep level in the bandgap, Ed, which is initially empty.  The 

energy required to cause this transition comes from a photon energy of hν1.  This 

process is called “absorption" since the material absorbs the photon.  In this 

case, an electron is trapped at the deep level, leaving a hole in the valence band. 

For case 2, an electron of energy E is driven from an initially full deep level 

energy state, Ed, in the bandgap to an initially empty level in the conduction 

band. The energy causing this transition comes from a photon energy of hν2.  

This process is also called "absorption" because a photon is absorbed.  In this 

case, an electron is put into a level in the conduction band. 

Case 3 illustrates the transition of an electron from an initially full 

conduction band to an initially empty deep level state in the bandgap with the 

release of a photon of energy hν2.  This process is called "emission" because a 

photon is emitted from the material.  In this case, an electron makes a transition 

from the conduction band to a deep level in the bandgap.  From the point of view 

of a hole in the valence band, this transition is analogous to that represented by 

case 2 except the hole, not the electron, is undergoing the transition.  That is, a 

hole makes a transition from the deep level to the conduction band. 

Case 4 is analogous to case 1 because an electron makes a transition 

from an initially full deep level state, Ed, into a state in the valence band.  This 

transition emits a photon of energy hν1.  This process is thus also called 

8 



   
 

"emission."  From the hole viewpoint, a hole makes a transition from the valence 

band to the deep level. 

A typical optical cross section for a deep level is illustrated in Figure 1.2.  

In this and subsequent optical cross section figures, the cross section is plotted 

on the electron energy scale with the zero of energy at the top of the valence 

band.  The bandgap is indicated by the gap between the valence bandedge and 

the conduction bandedge. The intensity of the curve of an optical cross section 

represents the probability of an electron transition occurring with a given photon 

energy. 

Again, consider case 1.  The electron energy is represented by E in Figure 

1.2.  There is a probability that a transition will occur which will move the electron 

from its state in the valence band to a deep energy level, Ed, under the influence 

of a photon of energy hν1.  This probability is shown as P1. 

From conditions represented by case 2, the electron, represented by 

energy Ed, will make a transition from its current deep level state in the bandgap 

to an energy state in the conduction band, E, under the influence of a photon of 

energy hν2.  The probability of this transition occurring is shown as P2. 

Current use of the terminology "deep level" has evolved to define a level 

as "deep" if it is produced by the central cell potential alone, neglecting the 

Coulomb potential, regardless of its actual depth.  In this thesis we adopt this 

definition exclusively.  Thus, following Hjalmarson et al. (5, 6), in what follows, we 

neglect the Coulomb potential entirely.  Therefore, in this description all impurity 

energy levels in the bandgap are "deep" and there are no shallow hydrogenic-like 

levels in this theory.  The shallow, effective mass-like levels which result from the 

Coulomb potential could be included, in principle, in the theory in a 

straightforward but tedious manner.  Since we desire to study deep levels here, 

we leave them out of our theory.  Further discussion of these points may be 

found in Chapter II. 

Optical studies of deep levels in semiconductors measure the electronic 

structures of the defects which produce such levels.  Numerous studies have 
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been made to determine which defects form deep levels, or deep traps (2, 5, 7, 

8). 

The earliest models of defects in semiconductors, such as the hydrogenic 

model (otherwise known as effective mass theory, or EMT) (9, 10, 11, 12) do a 

reasonably accurate job of describing shallow impurity levels.  However, they fail 

to describe deep levels, even qualitatively (13, 14, 15). 

There have been several attempts to provide a theoretical description of 

the physics of deep level impurities (5, 6, 16, 17, 18).  In this thesis, we use a 

method which is known collectively as the Vogl-Hjalmarson theory.  This 

approach describes the host bandstructure using the sp3s*  semi-empirical tight 

binding model of Vogl et al. (6) and the deep levels are described using the 

Hjalmarson et al. deep level theory (5, 19).  We use this approach here because 

our main goal in this thesis is to provide a description of the chemical trends in 

the deep level optical cross sections as a function of both impurity and host. 

Since it is very difficult to predict the energy level of any deep level 

impurity with accuracy, it is of more interest to study the chemical trends of deep 

levels in semiconductors.  As shown by Hjalmarson et al. and Vogl et al., the 

major chemical trends in deep level energies may be determined by the energy 

bands of the undisturbed host and by the impurities' atomic structure.  The Vogl-

Hjalmarson theory has previously been extremely successful in its predictions of 

such trends for several defects in numerous semiconductor materials (20, 21, 22, 

23, 24). Thus, it is ideally suited for application to the prediction of the chemical 

trends we desire here. 

It should be emphasized that the formalism for the optical cross section 

that we derive in Chapter III is independent of our choice of bandstructure model 

and, with only relatively minor changes, it can also be used with an alternative 

deep level theory.  Of course, the numerical results in this thesis do depend on 

our choice of both the bandstructure model and deep level theory. 

Other approaches to the theory of deep levels exist (9, 11, 17, 18, 25, 26, 

27, 28).  Some examples are Jaros' theory (17, 27, 28) which uses pseudo-

potentials, the Koster-Slater technique (29) and the semi-empirical cluster 
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method.  Other deep level theories are discussed in the literature (30 through 

46). 

The theory of optical cross sections of deep levels has received less 

attention than the deep level theory itself.  The Lucovsky model (16) and the 

hydrogenic model have both been used to describe this cross section.  The 

hydrogenic model gives excellent information concerning shallow levels of 

impurities, but the cross sections are not adequate for describing deeper levels.  

The Lucovsky model is also useful, except that it is limited to deep levels near 

the center of the bandgap. 

Jaros and co-workers also introduced a model describing optical cross 

sections of deep levels (17, 27, 28). This model is based on pseudo-potentials 

and a defect wave function calculated by Banks, Brand and Jaros using the 

Green's function method (28, 47, 48, 49). 

The following chapters of this thesis are organized in such a manner as to 

logically develop results and conclusions.  Chapter II discusses the applicable 

theories required for an understanding of optical cross sections. Chapter III 

develops the formalism for the optical cross section of a deep level produced by 

a substitutional impurity, on which numerical analysis is performed. Chapter IV 

analyzes the results of the numerical treatment of the optical cross sections and 

discusses the calculated chemical trends.  Finally, Chapter V summarizes the 

analysis and chemical trends. 
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Figure 1.1 Energy Levels 
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Figure 1.2 Optical Cross Section of a Typical Semiconductor 
 
 
 
 
 
 
 
 
 

14 



   
 

 

15 



   
 

CHAPTER II 
BACKGROUND 

In this thesis, we develop a formalism for the deep level optical cross 

section which is in the spirit of the Lucovsky model (16) in that it assumes a short 

ranged defect potential only.  However, our theory accurately takes into account 

the host bandstructure and enables one to straightforwardly obtain chemical 

trends by using the defect potential of Hjalmarson et al. (5, 6, 19, 50). Unlike the 

Lucovsky's model, the results in the present case must be obtained numerically.  

However, our theory is still computationally simple enough to enable us to obtain 

the desired trends with minimal computational effort. 

There are two alternative definitions of a deep impurity level in the 

literature.  Experimentally, impurity levels are considered "deep" if their distance 

from the band edges is large compared to KbT at room temperature (where Kb is 

Boltzman's constant) (14).  In this case, typically, one considers a level to be 

"deep" if it occurs at an energy which is greater than about 0.1 eV from a 

bandedge.  Theoretically, an impurity energy level is called "deep" if the long 

range (Coulombic) potential can be neglected in comparison to the short range 

(central cell) potential, independent of the depth of the level in the bandgap (1, 5, 

14, 17).  In this chapter and in the rest of this thesis, we use the latter definition 

exclusively. 

In this chapter we will briefly review some of the background material 

which is necessary to develop our formalism.  Specifically, the elementary theory 

of shallow levels in semiconductors, the particular version of tight binding 

bandstructure theory that we use, a semi-empirical theory of deep levels, and the 

Lucovsky model for the deep level optical cross section are all briefly reviewed.  

The physics of shallow levels is also contrasted to that of deep levels. 

 

2.1 Hydrogenic Model For Shallow Levels 
 

The hydrogenic, or effective mass model, (derived from the effective mass 

theory, EMT) is one of the earliest theories of defects in semiconductors (9, 10, 
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11, 12, 16). The simplest version of this theory is easily understood. Assume, for 

example, that N electrons occupy the valence bands of the host material along 

with an impurity whose valence differs from that of the replaced host atom by +1 

(one extra electron and one extra proton). Assume also, that the material of 

interest is a covalent material with four sp3 hybrid bonds per atom.  The extra 

electron will occupy the lowest energy state available to it.  For small k 

(especially near the Brillouin center where k ~ 0), one can always write the 

energy of the lowest conduction band as 

 

E( k ) =   EC + (  k   →  ) 2 
2 me*

   ,        (2.1) 

     

where EC is the conduction band minimum and the effective mass, me is defined 

as 

 

 1  
me*

       =     1 
2
     .  d2 E( k  → ) 

d k
→  2 

       (2.2) 

                              

 

The impurity atom has one extra valence electron and one extra proton.  

The extra electron is not taken up in the four bonds, so that it is only weakly 

bound to the proton and is free to move about in the crystal (it goes into the 

conduction band).  The host atoms are, on the average, neutral but since the 

electron is far from the proton, the impurity atom has an effective positive charge.  

This sets up a Coulombic field in addition to the other crystal fields that existed 

before the introduction of the impurity.  The electron is weakly bound to the 

proton through this Coulomb potential.  It can now be viewed as a "free electron" 

with mass, me*, which is acted upon by the Coulombic field.  Furthermore, this 

Coulomb field is screened by the dielectric constant of the material.  Thus the 

problem of finding the energy levels of the impurity is analogous to that of the 

hydrogen atom with the proton having a charge equal to e/√Є, where Є is the 
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dielectric contant of the material, and with the electron having a mass, me*.  

Since the hydrogen atom has bound states below the ionization continuum, the 

bound states for the electron are introduced below the conduction band edge, 

with energies given by 

 

En = Ec - e4  me* /(2 2 Є2 n)2  ,       (2.3) 

 

where n = 1, 2, 3, ... 

 

The energy levels of the hydrogen atom are 

 

 E 
n

H
 = - e4 (mo)/(2 2 n)2 ,        (2.4) 

 

where mo is the mass of the free electron.  Equation (2.3) can thus be written as 

 

En = Ec + En (me* /moЄ2 ) .        (2.5) 

 

Such impurities are called donors and the associated energy levels are 

called donor levels.  Typical values of Є are of the order of 10, and experimental 

values of me range from about 0.03mo to about mo.  Equation (2.3) thus shows 

that the ionization energy of the lowest donor energy level (n=1) is of the order of 

100 meV.  Compared with the bandgaps of materials discussed in this thesis, 

which range from about 1 eV to about 3 eV, these donor ionization energy levels 

are therefore clearly shallow. 

A similar approach will work for impurities whose valence differs from that of 

the replaced host atom by -1 (one fewer electron and proton) .  The resulting 

hydrogenic levels are, in this case, introduced above the top of the valence band 

and are called acceptor levels.  In this case, Eq. (2.5) becomes 
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En = Ev - E 
n

H
  (mh* /moЄ2 )      ,       (2.6) 

 

where Ev is the valence band maximum and mh  is the effective mass of a hole at 

the top of the valence band. 

The hydrogenic model of shallow impurity levels is valid for the description of 

defects which introduce Coulombic potentials in the crystal (i.e., those that are 

nonisovalent).  Depending on the complexity of the band structures and the 

values for me  and Є , the results of this model in comparison with data vary from 

excellent to poor.  It works best for simple, or single donors or acceptors, but can 

be extended to double donors or acceptors.  It also works well for excited states 

and less well for the description of the impurity associated ground state (15). 

 

2.2 Vogl's Tight Binding Theory For Host Bandstructures 
 

The nearest neighbor tight binding bandstructure model for zincblende and 

diamond materials used in our optical cross section calculations was developed 

by Vogl et al.(6).  It has been used extensively in other applications to study the 

electronic properties of semiconductors (51, 52, 53).  This model constructs the 

required energy bands for sp3-bonded semiconductors by using only 13 semi-

empirical parameters.  Prior nearest neighbor tight binding models were not able 

to adequately fit the conduction bands for indirect gap semiconductors.  Vogl et 

al. circumvented this difficulty by including an excited state on each atom at high 

energy (called the s*  state), which serves to push down the lowest conduction 

bands at the proper points in the Brillouin zone (54, 55).   This s*  state is 

somewhat of an artifact of the theory which attempts to simulate the higher lying 

d states which should actually be present.  It was introduced to push down the 

energy eigenvalues to lower energies.  The resulting conduction bands are in 

good agreement with both experiment and more sophisticated theory. Theories 

with fewer than eight bands cannot adequately describe the chemistry of 

covalently bonded materials.  However, the inclusion of the excited s*-state on 
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each atom gives us an sp3s* basis and a ten-band theory.  Therefore, using this 

theory, we can describe all energy bands, even the lowest conduction bands that 

were not available in the prior models.  In an sp3 basis and in the nearest-

neighbor approximation there are four diagonal matrix elements and five 

independent nearest-neighbor transfer matrix elements.  The excited s*-state 

couples only to the p-states on adjacent sites and does not couple to the s-states 

on different sites.  This introduces four additional matrix elements.  All such 

matrix elements in the Vogl et al. theory were empirically fit to a combination of 

experiment and accurate pseudo-potential bandstructures (6, 56).  The empirical 

matrix elements in the Vogl et al. model are derived and discussed in detail in 

Reference 6 where the numerical values are also listed. 

There are other nearest neighbor tight binding models, some of which 

motivated the Vogl et al. theory.  One such model is the empirical Bond Orbital 

Model developed by Harrison and co-workers (57, 58, 59, 60, 61).  This model 

provides a simple nearest neighbor tight binding theory of valence bands.  With 

this model, one can estimate the nature of the filled valence bands of almost any 

semiconductor.  However, this model does not accurately address the empty 

conduction band states, and for it to be usable for our purposes, a comparable 

description of the conduction states is required.  Vogl et al. refer to Chadi's model 

(62) but this model fails to describe the lowest conduction bands. This causes 

this model not to produce the indirect fundamental bandgap for the indirect gap 

semiconductors. 

 

2.3 Hjalmarson's Deep Level Theory 
 

The version of deep level theory we use in this thesis was developed by 

Hjalmarson et al. (5, 19).  This theory predicts deep level energies using only 

host and impurity atomic orbital energies (ionization energies) and the Vogl et al. 

tight binding bandstructure (discussed in Section 2.2 above) for the host material.  

This approach and its generalizations have successfully predicted the chemical 

trends for numerous defect/host systems (5).  For example, see Refs. 24, 52, 63, 
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64, 65, 66, 67, 68, 69, 70, 71.  The general defect potential for substitutional 

defects has several contributions: a short range central cell potential, long range 

Coulomb potential and an electron-lattice interaction caused by distorting the 

lattice near the impurity (72).  In the Hjalmarson et al. approximation, only the 

short range, central cell potential is kept, since it is known that deep levels are 

controlled primarily by this contribution.  Thus, all levels in this theory are "deep" 

in the sense described in Chapter I (73) . As stated above, Hjalmarson et al. 

developed their deep level theory in conjunction with the Vogl et al. semi-

empirical   tight-binding,   sp3s*,   ten-band model.     Since the excited s-like 

states   are generally   in the same energy range for all sp3-bonded 

semiconductors, a substitutional impurity for a host atom will cause very little 

change in them.  Therefore, the defect potential in the Hjalmarson theory is 

determined only by the s- and p-like ionization energies.  In this approximation, 

this potential is a one site potential with no lattice relaxation; it is thus a diagonal 

matrix.   In this theory, the matrix elements are proportional to the difference 

between atomic energies of the host and the impurity.  Hjalmarson et al. make 

three approximations concerning the form of the defect potential. These are (i) 

that the atomic energy difference between two atoms in a solid is similar to that 

difference for two free atoms, (ii) that the difference of the interatomic matrix 

elements is very small (generally they are set to zero) , and (iii) lattice relaxation 

and charge state splittings are neglected.  These have been included in later 

generalizations of the theory (66, 74). 

 

2.4 Lucovsky's Model For Optical Cross Sections of Deep Levels 
 

In order to develop a theory for optical cross sections of deep levels, 

Lucovsky (16) made the approximation that the deep level impurity potential is a 

delta-function well.  That is, in this theory, this potential is infinitely deep and 

infinitely short ranged.  Based on this approximation, Lucovsky derived an 

expression for the cross section using the dipole approximation and time 

dependent perturbation theory (17).  The derivation of the Lucovsky cross section 
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is detailed in the literature (16).  This cross section σ ( ν) (for the conduction 

band only) has the following form                                                                      

                                                                                                                   

σ(ħν) = (constant)   (Ei) (1/2)( ν - Ei)(3/2)      (2.7) 

                                   ( ν) 3 

where ħν is the photon energy and Ei is the deep level (ionization) energy.  The 

constant contains parametric characteristics of the material, such as the index of 

refraction and the effective field ratio for the induced transition.  Because this 

constant is independent of photon energy and deep level energy, it is 

unimportant for the general functional form of the Lucovsky model. 

The function of Eq. (2.7) has certain qualitative characteristics as a function 

of the photon energy.  At ν = Ei it rises from zero and has a maximum at ν = 

2Ei.  It falls off approximately as ν(-3/2)   for ν >> Ei.  This behavior is illustrated 

in Figure 2.1.  In this case, the cross section is plotted as a function of photon 

energy ν 

 .  For the valence band, the cross section is a mirror image of that of Figure 2.1. 

Lucovsky's model is simple because it obtains the cross section in closed 

form.  However, it can only predict the threshold, the transition maximum and the 

general shape of the cross section.  This model does not take into account the 

effects of the host bandstructure nor does it allow one to obtain chemical trends, 

as it predicts a universal cross section shape for all deep levels. 

The results of applying Lucovsky's model to the deep level optical cross 

sections in a specific material selected in this thesis are discussed in detail in 

Chapter IV. 

 

 

 

22 



   
 

Figure 2.1.  Lucovsky's Model For Optical Cross Sections of Deep 
Levels, Conduction Band Only. 
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CHAPTER III  
FORMALISM FOR THE OPTICAL CROSS SECTION 

 

3.1 Derivation of the General Form 
 

The starting point for our deep level optical cross section formalism is time 

dependent perturbation theory from quantum mechanics (75).  Specifically, we 

use "Fermi's Golden Rule" for the probability per unit time of a perturbation 

inducing a transition from one stationary state to another.  Let n be the initial 

state and m be the final state.  From first order time dependent perturbation 

theory, the probability that a perturbation will induce a transition from the state n 

into the state m with energy difference k→ ωnm = Em - En during the time in which 

the perturbation occurs is given by 

 

                                                            2 

Tnm (τ) =   1   
2
   ∫ 

    τ
 
0

   <n|  Ŵ   |m > e(iωnm) t       (3.1) 

       
                                                     

where τ is the period of the perturbation, t is the time at which the transition 

occurs, ω is the frequency of the perturbation and < n I  Ŵ  | m > is the matrix 

element of the perturbation between the initial and final states.  If the perturbation 

is constant, the matrix element < n I  Ŵ  | m >  does not depend on time and the 

integral can easily be evaluated.  It becomes 

 

∫ 
    τ
 
0

   <n|   Ŵ   |m > e(iωnm) t dt =  <n|   Ŵ   |m >   e(iωnm) t -1  
iωnm

   (3.2) 
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The transition probability during the period that the perturbation occurs, by 

combining Eqs . (3.1) and (3.2), can easily be found to be 

 
  2                        

Tnm(τ) =  2  
2
    <n I  Ŵ  |m>      F (En - Em),     (3.3) 

       

where 

 

F(En - Em) = 1 - cos [ (En - Em)τ /  ] .      (3.4) 

                       [ (En – Em)2 τ /   ] 

 

When En = Em, the function F (En - Em) has a maximum value of 1/2 τ2 .  This 

function vanishes for I En – Em I =  2π  / τ,  4π  / τ,  . . .   For small values of  

τ <<  / En , the transition  probability is proportional to τ 2.  If τ is sufficiently 

large compared to the period  / (En - Em) of the system, F(En - Em) can be 

approximated as a delta function 

 

F(En - Em) = π τ ħ  δ(En - Em) .       (3.5) 

 

In this case, Eq. (3.3) for the transition probability can be rewritten in the form 
                                                                                  2 

Tnm(τ)    =    2  
2
      <n I   Ŵ    |m>     τ  δ(En  -  Em) .    (3.6) 
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               Since the transition probability is proportional to the time during which 

the perturbation occurs, the transition probability per unit time or the number of 

transitions per second, can be written as 

 

 

                                                       2              

Pnm = Tnm(τ) =  2τ       <n I Ŵ  |m>     δ (En - Em).     (3.7) 

                      
This result is commonly known as "Fermi's Golden Rule." 

 

Under the action of a perturbation which is periodic in time, transitions take 

place to states with energies satisfying the condition Em = En + ω , where ω is 

the frequency of the perturbation.  In our case, we are concerned with an 

external electromagnetic (photon) field of frequency ω . 

Now let us assume that the quantum system described by Eq. (3.7) is interacting  

with electromagnetic radiation of frequency ω .  In this case, from standard 

quantum mechanics, the perturbation operator, ŵ, is 

 

Ŵ   =   - e  
μc

     ( Â  •  p̂  ),        (3.8) 

             

where e is the charge of the particle, μ. is the electron  mass, c is the speed of 

light, 3x108 m/s  , and Â  is the vector potential (17) , which has the form  

 

Â  = Ao  [exp i ( k→  • r  -ωt)} + const.]   .      (3.9) 
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In Eq. (3.8), p̂  is the momentum operator.  If Eq. (3.8) is used in Eq. (3.7), the 

resulting transition probability is said to be calculated in the dipole approximation.  

In this case, the matrix element <n I Ŵ  |m> is clearly proportional to the 

momentum matrix element < n I  p̂  I m >. 

In order to derive the general form of the optical cross section, we must first 

choose a specific initial state (say the valence band, of energy En, k
→

 ), a specific 

final state (say a deep level of energy, Ei), and photon energy, hν , and sum over 

all initial states ( ψ n, k
→

 ) .  In the calculation discussed below, the final (or initial) 

state is given by the impurity wavefunction, ψ , which is expanded in terms of the 

unperturbed host crystal eigenfunctions, φ n, k
→

 , discussed later in this section, 

and the initial (or final) state is a particular bandstate with wavefunction, φ n, k
→

 .  

Substituting those, along with Eqs. (3.8) and (3.9) into Eq. (3.7), using the dipole 

approximation as derived by Dexter (76) and Blakemore (77), and summing over 

all initial (band) states gives the general form for the optical cross section σ(hv) 

of a deep level impurity in a semiconductor 

 

σ(hν) = 

(constant /  ) < ψ |  p̂  |  φ 
k

n
∑ n, k

→
 >     δ( |Ei| + En, k

→
  - ν   (3.10) 

   

where ν is the photon energy, |ψ > is the localized impurity wave function, p̂  is 

the momentum operator, | φ n, k
→

 >  is the host crystal eigenfunction (band wave 

function), or Bloch function, n is a band index, k→  is a wave vector in the first 

Brillouin zone, Ei is the impurity deep level energy, and En, k
→

  is a band energy.  

The constant contains material dependent parameters and is independent of the 
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photon energy.  Therefore, it makes no contribution to the general shape of the 

optical cross section. 

 

 

 
3.2 Form of the Cross Section in Deep Level Theory 

 

The goal of the following derivation is to begin with Eq. (3.10) and to obtain a 

form for σ(hv) which can be easily numerically evaluated and which uses some 

of the results of deep level theory in its derivation (17, 77). It should be noted that 

the electron-phonon interaction is not considered in the formalism we discuss 

here. Although, in an experimental cross section, such effects are well-known to 

be present, the following theory neglects this contribution and considers pure 

electronic transitions only.  In order for our results to be compared to experiment, 

it would therefore be necessary to extract the phonon contribution from the 

experimental results.  A method for doing this is outlined in Ref. 72. 

 

The wavefunction of a deep level localized state in the band gap of a 

semiconductor can be expanded in terms of Bloch functions (the eigenfunctions 

of the host crystal Hamiltonian) (17), 

 

|ψ >  =  A 
k

n
∑ n, k

→
  | φ n, k

→
 > ,         (3.11) 

 

where Ho | φ n, k
→

 >  =  En, k
→

  | φ n, k
→

 > , A n, k
→

  is the expansion  coefficient (14, 
28, 78), and Ho is the host Hamiltonian. 
 
 

Now consider the quantum mechanical problem of solving the one-electron 

Schrodinger equation in the presence of the deep level defect, 

H |ψ> = E |ψ>  ,        (3.12) 
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where H is the Hamiltonian and E is the energy eigenvalue. In the presence of a 

deep level impurity, one can write 

H = Ho  + V       ,         (3.13) 

 

where Ho  is the perfect crystal hamiltonian and V is the impurity potential.  Thus, 

 

(Ho  + V) |ψ>  =  E|ψ>  ..        (3.14) 

 

This can be rearranged in the form 

 

V|ψ > = (E - Ho ) | ψ >  .        (3.15) 

 

Rearranging   again  yields 

 

(E   -   Ho ) -1  V|ψ >   =    |ψ>     .                                                                   (3.16) 

 

Using the definition of the host Green's function (79, 80) 

 

Go (E) = (E - Ho ) ,                                         (3.17) 

 

Eq.   (3.16)   can  be  written   as 

 

Go (E)  V|ψ >   =    |ψ>   .                                                                               (3.18) 

 

 The advantage of writing Schrodinger's equation in this form is that it is 

only necessary to solve it in real space in the subspace of the impurity potential 

V.  For deep level impurities V is very short ranged, as already discussed.  

Substituting Eq. (3.11) into the right hand side of Eq. (3.18) yields, 
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G(E) V|ψ >   =  A
k

n
∑ n, k

→
  | φ n, k

→
 >  .      (3.19) 

 

Matrix elements of this equation in the Bloch representation are 

 

<φ n’, k
→

 ‘ | G(E) V | ψ>  =   A
k

n
∑ n, k

→
  <φ n’, k

→
 ‘| φ n, k

→
 > .    (3.20) 

 
The Bloch functions are orthonormal so that 

 

<φ n’, k
→

 ‘| φ n, k
→

 > = < δ n’, k
→

 ‘| δ n, k
→

 > .        . (3.21) 

 

Using  Eq. (3.21) in  Eq. (3.20) yields an  expression for the coefficients,  An, k
→

  ,  

which  has  the  form 

 

A n, k
→

    =   <φ n, k
→

  | G(E) V | ψ>        .      (3.22) 

 

Since Ho I ψ n, k
→

   =   En, k
→

 | ψ n, k
→

  >   it can be easily  shown  that 

<φ n, k
→

  | G(E)  =   <φ n, k
→

  |           1      .     .                                            (3.23) 

                                                 E - En, k
→

 
 
Combining  Eq . (3.22) and (3.23) 

 

An, k
→

    =   < φ n, k
→

  | V | ψ>    .       (3.24) 

                         E - En, k
→

 

Now let us write the matrix element occurring in Eq. (3.10) utilizing the results 

from Eq. (3.11) and (3.24) . From Eq. (3.11), it can be seen that 
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< ψ |  p̂  |  φ n, k
→

 > =  (A 
k

n

′

′
∑ n’, k

→
 )* < φ n’, k

→
 ‘ | p̂  |  φ n, k

→
 > .    (3.25) 

 

Since a reasonable approximation is that 

 

p̂  |  ψ n, k
→

 >  =  k→ | ψ n, k
→

    and since  the Bloch  functions  are 

orthonormal,   this becomes 

 

< ψ |  p̂  |  φ n, k
→

 > =  k→  (A n’, k
→

 )* .       (3.26) 

 

Using Eq. (3.24), the matrix  element which enters the cross section becomes 

 

< ψ |  p̂  |  φ n, k
→

 > =     k→  < ψ |  V |  φ n, k
→

 >     .      (3.27) 

                                                  E – E n, k
→

  

 

 As has already been discussed, in the Hjalmarson deep level theory the 

defect potential V is assumed to be diagonal in a site representation basis and 

localized in the central cell at the origin (5, 81) .  It has the form 

 

V = 
1β
∑ | 1, 0→ ,  β > V1β   <   1, 0→ ,  β | .     (3-28) 

 

Here, 1 stands for the irreducible representation of the defect level, either A1 (s-

like) or T2 (p-like) , and β is a site designator.  In our notation,  β = 0 (1) for an 

impurity at the anion (cation) site.  Therefore, the form for Eq. (3.27) in the 

Hjalmarson et al . deep level theory is 
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< ψ1β |  p̂  |  φ n, k
→

 > = 

  k→  <  ψ1β  | 
1' 'β
∑ |  1’, 0→ ,  β’ > V1β <  1’, 0→ ,  β’ |  φ n, k

→
 >    ,        (3.29) 

                                                        E1’β’ – En, k
→

 
 

 

where ψ1β means the wavefunction of symmetry 1 for the deep level of energy 

E1β for an impurity at site β . Because of orthogonality we have, 

 

< ψ1β |  1’, 0→ ,  β’ > =  δ11’δββ’  <   ψ1β  | 1, 0→ ,  β > .      (3.30) 

 

This  yields   a  new  form  for   Eq.   (3.27),   which   is 

 

< ψ1β |  p̂  |  φ n, k
→

 > = 

k→  V1β <  ψ1β | 1, 0→ ,  β > <1, 0→ ,  β | φ n, k
→

 ,  >    .     (3.31) 

                               E1β – En, k
→

  

 
 
 

 Following Hjalmarson's dissertation (5), the host wave functions are 

determined entirely by matrix elements of the host Hamiltonian in a basis of 

orthonormal atomic orbitals.  Thus we write 

 

|  φ n, k
→

 > =  
1β
∑ C k

→
 ,n, 1β |  Φ1β k

→
  > ,       (3.32) 

where Φ1β k
→

  is the atomic wavefunction for covalently bonded orbitals in the 

mixed Bloch-Wannier basis and C k
→

 ,n, 1β are eigenvectors of the Hamiltonian.  
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Also, from Hjalmarson's dissertation (5), the functions Φ are given in terms of 

localized atomic orbitals at a given lattice site by 

 

|  Φ1β k
→

  > = N(-½)

iR
∑ exp i k→  • (  R→ + βτI ) |  1, R→ , β >  .     (3.33) 

 

where τI are the positions of the four atoms nearest to a central anion (See 

Appendix A) .  That is, the functions Φ are basically the fourier transforms of the 

atomic orbitals at each site.  Utilizing Eq.(3.32) and (3.33), the quantity  

<1, 0→ ,  β | φ n, k
→

  > occurring in Eq. (3.31) can be written as 

 

<1, 0→ ,  β | φ n, k
→

  >  =    

N   exp [ i k→  • (  R→ + βτ
1' 'iβ
∑ I )] C k

→
 ,n, 1β < 1, 0→ ,  β | 1, 0→ ,  β > ,     . (3.34) 

 
Since the site representation basis is orthonormal, we have 

 

< 1, 0→ ,  β | 1, R→ ,  β > =  δ11’ δR
→

 0
→

  ’   δββ’    .       (3.35) 

 

Eq.   (3.34)   thus   reduces   to 

< 1, 0→ ,  β |  φ n, k
→

 > =  exp (i k→  •  βτ
i
∑ I )] C k

→
 ,n, 1β  .    (3.36) 

 

Substituting Eq. (3.36) into Eq. (3.31) gives 

 

< ψ1β |  p̂  |  φ n, k
→

 >  = 

 k→  V1β <  ψ1β | 1, 0→ ,  β >  [∑ exp (i k→  •  βτI )] C k
→

 ,n, 1β  ]        (3.37) 

                                           N   E1β – En, k
→
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Substituting Eq . (3.37) into the general equation for the cross section, Eq. (3.10) 

yields 

 

σ1β(hν) =       constant V1β
2 | <  ψ1β | 1, 0→ ,  β > |2          x     (3.38) 

                                           N 

,n k
∑ k→ 2 | exp (i k→  •  βτ∑ I ) | 2  | C k

→
 ,n, 1β |            . 

                                          E1β - En, k
→

 
 

 The shape of the optical cross section of the deep level is not affected by 

the constant in Eq. (3.38) which consists of parameters which are characteristic 

of the material of interest.  These parameters, such as the index of refraction and 

the field ratio for the induced transition, are independent of photon energy and 

the deep level impurity energy. 

 Here we seek trends in the cross section as a function of deep level 

energy.  In this regard, Ren, Hu, Sankey, and Dow (81) have shown that the 

deep level wavefunction  <  ψ1β | 1, 0→ ,  β >   is approximately independent of 

the deep level energy.  Thus in what follows, we utilize their results and make the 

approximation that 

 

| <  ψ1β | 1, 0→ ,  β > |2  = constant   independent of energy.    (3.39) 

 

The final form of the optical cross section which we use in this thesis is thus 

given by 

 

σ1β(hν) = (constant / ) (V1β
2 / N) 

,n k
∑ k→  | ∑ exp (i k→ • βτi ) | 2  | C k

→
 ,n, 1β |2   x   

     δ ( | E1β |  +  En, k
→

  - hν )  .     (3-40) 
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The quantities En, k
→

  and C k
→

 ,n, 1β can be calculated easily using the Vogl 

Hamiltonian and standard numerical techniques.  These quantities as well as E1β 

and V1β  are calculated in the program shown in Appendix B. 

 The optical cross section, σ1β(hν), Eq. (3.40), is in the form of a 

generalized density of states.  Numerical methods for computing such functions 

were developed by Hjalmarson using a method based on that originally due to 

Lehman and Taut (5, 82).  The computer program used to calculate σ1β(hν) is 

therefore an extension of that developed by Hjalmarson.  Both the program for 

the optical cross section and the related numerical analysis are described in 

detail in Appendices A and B. 
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CHAPTER IV 
RESULTS AND CHEMICAL TRENDS 

 

4.1 Introduction 
 

 In this chapter, for the materials selected, results for the computed optical 

cross section for various impurity levels in the bandgap are presented.  In order 

to illustrate the chemical trends in this quantity as a function of impurity level, in 

each case three deep impurity levels were selected; one near the valence band 

edge, one near the center of the bandgap, and one near the conduction band 

edge.  Also in this chapter, the optical cross sections for deep levels obtained by 

our theory are contrasted to those obtained in Lucovsky's model.  Also, the 

trends of the Lucovsky model as a function of the deep level impurity are 

discussed for three different energy levels within the bandgap.  The chemical 

trends in the optical cross section predicted by our theory as the semiconductor 

host is varied are also discussed in this chapter.  In particular, the cross sections 

for materials of the zincblende and diamond structures and for materials with 

direct and indirect bandgaps are compared and contrasted.  In addition, the 

effects of the level symmetry on the optical cross section are discussed.  Finally, 

the optical cross sections of deep level impurities based on Jaros' theory are 

compared and contrasted with those obtained in the present theory.  It should be 

noted that in our cross section curves, the zero of energy is taken as the top of 

the valence band. 

 

4.2 Comparison to Lucovsky's Model 
 

 From the discussion of Lucovsky's model in Chapter II, one concludes that 

the this model is not adequate for describing the optical cross section unless the 

impurity level is very near the center of the bandgap (5, 16, 17). To illustrate an 

application of Lucovsky's model and compare it with our theory, we will examine 

the optical cross section for deep level impurities in Si.  For this illustration, we 

37 



   
 

have chosen levels at 1.00 eV (near the conduction band edge), 0.75 eV (near 

the center of the bandgap), and 0.25 eV (near the valence band edge) in this 

material. 

 

 Figure 4.1 shows the results obtained when applying Lucovsky's model to 

these cases, for transitions to the conduction band only.  In this case, the cross 

section is plotted as a function of normalized photon energy.  As the impurity 

level changes from near the conduction band to near the valence band, the 

curves broaden as expected.  In Lucovsky's model, the cross section maximum 

must occur at two times the value of the impurity energy.  Accordingly, the peaks 

of the cross sections should occur at 0.50 eV (for Ei = 0.25 eV), at 1.50 eV (for Ei 

= 0.75 eV), and at 2.00 eV (for Ei = 1.00 eV).  However, our results for deep 

levels in Si, Figure 4.2, show that when the impurity level is near the conduction 

band edge (1.00 eV), the cross section peaks at approximately 1.51 eV, or 1.5 

times the impurity energy.  Also, in our theory, when the impurity level is near the 

valence band edge (0.25 eV), the cross section peaks at approximately 1.599 

eV, or 6.4 times the impurity energy.  Only for an impurity level near the center of 

the bandgap (0.75 eV) does Lucovsky's model yield results that are consistent 

with our theory, which is based on deep level theory.  In this case, the cross 

section peaks at approximately 1.58 eV, or 2.11 times the impurity energy.  It is 

also clear that the shapes of the optical cross section curves obtained in our 

theory and Lucovsky's model are very different. 

  

 Therefore, when compared to our theory, the Lucovsky model behaves as 

expected for Si.  That is, the cross section broadens as the level becomes 

deeper (with respect to the conduction band edge) .  This model is thus only valid 

for levels that are near the center of the bandgap, where the cross section peaks 

at a value equivalent to two times the deep level impurity energy. 

 

 Although not discussed or illustrated in this thesis, a similar approach can 

be applied to the valence band with analogous results. 
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 In Figure 4.2 and all subsequent figures, the cross section is plotted on the 

electron energy scale where the top of the valence band is taken as the zero of 

energy. Transformation to the photon energy scale can be made by utilizing the 

relation 

 

hν = | E - Ei |     ,         (4.1) 

 

where E is the electron energy and Ei is the deep level energy. 

 

4.3 Zincblende and Diamond Lattices 
 

 Compound semiconductors which contain elements from columns III and 

V of the periodic table (83), such as GaAs, AlP, and GaP crystallize in the 

tetrahedrally coordinated zincblende lattice structure (47, 54, 84).  Since they 

behave as semiconductors, their bandgaps are relatively small compared to 

those of insulators.  The electrons in these materials are shared in covalent 

bonds between neighbors.  Similarily, the elemental semiconductors from column 

IV of the periodic table, such as Ge and Si, crystallize in the tetrahedral diamond 

structure.   Each atom shares sp3 bonds with four nearest neighbors of the same 

atom type, causing these materials to be extremely covalent. 

 

In the elemental semiconductors (diamond structure), Si and Ge, only s-like 

deep levels, whose wavefunctions transform according to the A1 representation 

of the Td point group, have been considered because impurity levels in these 

materials are most often s-like (17, 28, 78). Similarily, it has been determined that 

impurity levels at the anion site in zincblende crystals often have wavefunctions 

which transform according to the A1 representation of the Td point group (17, 28, 

78).  Thus, the optical cross sections of deep levels transforming according to the 

A1 representation in the diamond and zincblende materials are compared and 

contrasted here. 
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For each zincblende and diamond material discussed and illustrated in this 

chapter, the computed cross section for transitions to both the conduction band 

and the valence band for the deep levels at three energies are shown. 

 

The optical cross sections for A1-symmetric deep levels in Si, shown in 

Figure 4.2, and in Ge, shown in Figure 4.3, are typical of the results for the 

diamond structure semiconductors. 

 

As can be seen in these figures, the cross sections for transitions to the 

conduction bands show a sharp rise near the band edge and, for impurity levels 

near the center of the bandgap, peak at an energy equal to approximately twice 

the impurity energy.  This is consistent with the Lucovsky model (16, 48).  The 

cross section then decays very rapidly in energy, and is essentially zero at 2 eV 

for Ge and 3.5 eV for Si. 

 

The optical cross sections for transitions to points in the valence band are flat 

and broad, display very little structure, and are of a relatively small intensity. 

 

As the impurity level is driven closer to the conduction band edge, the cross 

section maximum is also shifted closer to the conduction bandedge.  When the 

impurity level approaches the valence band edge, the optical cross section 

maximum in the conduction band appears farther from the conduction band 

edge. 

 

The optical cross sections for deep levels with A1 symmetry associated with 

anion impurities in GaAs are shown in Figure 4.4.  Similar information for GaP 

and AlP are shown in Figures 4.5 and 4.6.  The optical cross section maximum 

for each of these materials behaves in the same manner as it does for both Si 

and Ge, that is, as the impurity level is driven closer to the conduction band 

edge, the optical cross section maximum is closer to the conduction band edge.  

As the impurity level approaches the valence band edge, the optical cross 

40 



   
 

section maximum in the conduction band moves farther from the conduction 

band edge. 

 

The physics of the optical cross sections of deep levels in zincblende and 

diamond structure semiconductors is very similar when the impurity 

wavefunctions transform according to A1 symmetry.  The cross sections for 

transitions to the valence bands are broad, flat and of very low intensity while 

those to the conduction band are very sharp and have their maxima near the 

conduction band edge.  They then decay very rapidly with increasing photon 

energy and are essentially zero for photon energies greater than about 3 eV. 

 

There are some distinct differences between the cross sections in the two 

cases, however.  For impurities in diamond structure materials, the cross 

sections for transitions to the conduction band peak at approximately twice the 

deep level energy.  On the other hand, the cross sections for transitions to the 

conduction bands in zinc-blende semiconductors peak much closer to the 

conduction band edge.  Further, the optical cross sections for impurities in 

zincblende semiconductors are spread out over a wider range of energies, 

typically 1 to 2 eV further than those for diamond structure materials.  Because of 

this, as the impurity levels change, there is a more pronounced spreading effect 

than for diamond semiconductors. 

 

Jaros et al. (17, 78, 85) have predicted optical cross sections for deep level 

impurities in zincblende and diamond materials.  When compared to our theory, 

their cross sections for transitions to the valence bands are broader (over 5 eV in 

width) and display several maxima. 

 

As the impurity level is moved closer to the conduction band edge, the 

maxima shift away from the valence band edge.  Some of these peaks may be 

attributable to differences in the bandstructures used by Jaros and in the present 

theory.  The cross sections for transitions to the conduction bands in both our 
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theory and Jaros’ have a unique peak and behave, at least qualitatively, like 

those of Lucovsky's model.  The closer the impurity level is to the conduction 

band edge, the closer the maxima are to the band edge in both our theory and 

that of Jaros. 

 

4.4 Comparison of Direct Gap and Indirect Gap Materials 
 

As is well-known, direct gap materials are characterized by the lowest 

conduction band edge occurring at the same   k  →  -point of the Brillouin zone as 

the highest valence band edge.  In a direct gap material, optical absorption of a 

photon occurs by a direct transition at essentially zero wavevector (47, 54, 84).  

The direct gap semiconductors for which we have chosen to analyze the optical 

cross sections of deep levels are GaAs and ZnTe. 

 

Indirect gap materials, on the other hand, have their valence band maxima 

and their conduction band minima occurring at different points in   k  →  -space.  In 

order for crystal momentum to be conserved, a photon can only be absorbed with 

the assistance of a phonon of some (typically large) wavevector (47, 54, 84).  

The indirect semiconductors which we have selected for analysis are Ge, Si, 

GaP, and AlP.  Although the experimental optical cross sections for these 

materials clearly includes electron-phonon cooperation, such effects are not 

included in the present theory, as already mentioned. 

 

4.4.1 Direct Gap Materials 
 

Optical cross sections for deep levels transforming according to A1 symmetry 

in GaAs are shown in Figure 4.4. As discussed in the previous section, the cross 

sections for transitions to the valence bands of GaAs are weak and broad.  

However, the cross sections for transitions to the conduction bands have maxima 

very close to the band edge and decay in energy very rapidly.  As the impurity 

level is driven away from the conduction band edge (that is, as the values 
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change from 1.25 eV to 0.33 eV), the cross section broadens over a wider 

energy range.  The reasons were discussed in detail in the previous section. 

 

When the impurity is located on the cation site and the impurity wavefunction 

transforms according to T2 symmetry, then the physics changes from the case 

where it transforms according to A1 symmetry.  Such cases are illustrated in 

Figures 4.7 and 4.8 for the materials GaAs and ZnTe.  The jagged peaks which 

are prevalent in Figure 4.7 for GaAs are due to effects of the bandstructure 

chosen for our calculations.  The cross sections diminish and approach zero 

when the energy is approximately 5 eV.  As the impurity is driven farther from the 

conduction band edge, the valence band optical cross section remains 

essentially the same except it does begin to peak closer to the band edge. 

 

In the conduction bands, the cross section maxima rise very sharply near the 

band edge and then decay very rapidly in energy.  As the deep level is driven 

from the band edge, the optical cross sections do not significantly change their 

maxima. 

 

For a similar direct gap semiconductor, ZnTe, shown in Figure 4.8, the 

chemical trends in the optical cross sections for deep levels of T2 symmetry are 

not very different from those of GaAs (described above) .  The very significant 

difference is that the energy range is larger, simply because the bandwidth is 

larger. 

 

4.4.2 Indirect Gap Materials 
 

Optical cross sections for deep levels transforming according to A1 symmetry 

in GaP are shown in Figure 4.5. Similar to the optical cross sections of other 

deep levels transforming according to A1 symmetry (discussed in more detail in 

Section 4.5 which follows), the cross sections for transitions to the valence bands 

are broad and weak. Cross sections for transitions to the conduction bands are 
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sharp and strong and reach their maxima in the immediate area of the band 

edge.  As the impurity level is driven further from the band edge, the cross 

sections broaden and the maxima occur further away from the band edge. 

 

The cross sections for deep levels of A1 symmetry in other indirect 

semiconductors, such as Si, shown in Figure 4.2, and Ge, shown in Figure 4.3, 

exhibit similar characteristics.  Since the bandgaps and bandwidths of these 

materials are significantly less than that of GaP, the energy over which the 

transitions occur is smaller. 

 

Optical cross sections for deep levels transforming according to T2 symmetry 

in GaP are shown in Figure 4.9. As before, optical cross sections for transitions 

to both the valence and the conduction bands are sharply peaked and strong in 

this case.  Similar to the optical cross sections of deep levels transforming with 

A1 symmetry, the cross sections for transitions to the conduction bands reach 

their maxima very near the band edge and then decay in energy very rapidly.  As 

the impurity level moves farther from the band edge, the maximum shifts slightly 

closer to the band edge. 

 

The cross section for transitions to the valence band in indirect gap materials 

have maxima farther from the band edge than similar cross sections in direct gap 

materials. Also, the energy range is much larger for indirect gap materials than it 

is for direct gap materials.  As the impurity level moves farther from the band 

edge, the maximum also moves farther from the band edge. 

 

Jaros has also predicted that the intensity of the cross sections is slightly 

higher for transitions to both the conduction bands and the valence bands in 

indirect gap materials than for direct gap materials (17, 78, 85).  This difference 

can be attributed to the difference in the bandstructures used in each case. 
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4.5 Variation in Cross Sections as the Symmetry is Varied 
 

The optical cross sections for deep levels of A1 symmetry in GaAs with the 

impurity located at the anion site (refer to Figure 4.4) can be compared to the 

optical cross sections for deep levels of T2 symmetry in GaAs with the impurity 

located at the cation site (refer to Figure 4.7).  The cross sections for transitions 

to the conduction bands have very similar characteristics for the two cases. The 

maxima occur near the conduction band edge and rise very sharply.  Nearly all of 

the cross sections for transitions to the conduction bands occur within a narrow 

range of energies. 

 

The optical cross sections for transitions to the valence bands where the 

deep levels transform according to T2 symmetry have several distinct maxima.  

The first rises very sharply near the valence band edge.  All of the cross sections 

cover a broad range of energies and gradually decline as the energy increases. 

 

The optical cross sections for deep levels of A1 symmetry in GaP with the 

impurity at the anion site are shown in Figure 4.5.  The transitions to the 

conduction bands are qualitatively similar to those discussed above for GaAs.  

Also, the comparable optical cross sections for deep levels of A1 symmetry in 

AlP with the impurity at the anion site (refer to Figure 4.6) possess these same 

characteristics. 

 

The optical cross sections for deep levels of T2 symmetry for GaP and AlP 

with the impurity located at the cation site are shown in Figures 4.9 and 4.10, 

respectively, The trends for these are similar to those associated with those for 

deep levels of T2 symmetry for GaAs, characterized in the valence bands by a 

broad range of energies and several maxima. 
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In the Jaros model, the predicted shapes of the optical cross section for 

materials with similar symmetries are different from those of our model.  In his 

model, for a transition to the valence band from an Al symmetric level, there are 

multiple maxima spread over a broad photon energy range.  The cross sections 

for transitions to the conduction band are of a much lower intensity than our 

predicted results and rapidly decay in a range of only a few eV. In our theory, we 

find that the cross section for transitions to the valence bands is small while that 

for transitions to the conduction bands have a very intense maxima before they, 

too, decay in intensity. 

 

For a transition to the valence band from a T2 symmetric level, Jaros has 

predicted cross sections with one maximum and rapidly decaying in energy.  For 

transitions to the conduction band, the cross section intensity in his model is 

greatly increased and extended over a slightly larger energy range.  Our theory 

predicts optical cross sections of deep level impurities whose wavefunctions 

transform as T2 symmetry to be very similar to those in Jaros’ theory.  Also, our 

theory predicts optical cross sections for A1 symmetric impurities to be similar to 

Jaros’ for transitions to the conduction bands but not for those to the valence 

bands.  Our theory shows flat, broad, low intensity transitions while Jaros 

predicts broad, jagged, high intensity peaks. 
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Figure 4.1.  Lucovsky's Model: Optical Cross Section for Deep Level 
Impurities in Si, Conduction Band Only 
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Figure 4.2.  Optical Cross Sections For Deep Levels Of A1 Symmetry In 
Si With Substitutional Impurities. 
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Figure 4.3.  Optical Cross Sections For Deep Levels of A1 Symmetry in 
Ge With Substitutional Impurities. 
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Figure 4.4. Optical Cross Sections For Deep Levels of A1 Symmetry in 
GaAs With The Impurity At The As (Anion) Site. 
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Figure 4.5.  Optical Cross Sections For Deep Levels of A1 Symmetry in 
GaP With The Impurity At The P (Anion) Site. 
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Figure 4.6.  Optical Cross Sections For Deep Levels of A1 Symmetry in 
AlP With The Impurity At The P (Anion) Site. 
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Figure 4.7. Optical Cross Sections For Deep Levels of T2 Symmetry in 
GaAs With The Impurity At The Ga (Cation) Site. 
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Figure 4.8. Optical Cross Sections For Deep Levels of T2 Symmetry in 
ZnTe With The Impurity At The Zn (Cation) Site.
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Figure 4.9.  Optical Cross Sections For Deep Levels of T2 Symmetry in 
GaP With The Impurity At The Ga (Cation) Site. 
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Figure 4.10.  Optical Cross Sections For Deep Levels of T2 symmetry in 
AlP With The Impurity At The A1 (Cation) Site. 
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CHAPTER V  
CONCLUSIONS 

 
We have developed a model for the calculation of the optical cross section of 

a deep level impurity in a covalently bonded semiconductor.  This formalism is 

based on quantum mechanical time dependent perturbation theory, assumes a 

tight binding representation for the host bandstructure, and models the deep level 

and its associated potential using the Hjalmarson et al. (5, 19) theory of deep 

levels.  Using this formalism, we have numerically calculated the optical cross 

sections for deep levels of various energies in selected semiconductor hosts.  In 

carrying out these calculations, the Vogl et al. bandstructures were input into the 

formalism. 

 

In the spirit of the Lucovsky (16) model, and following Hjalmarson, our model 

assumes a short ranged (central cell) defect only.  Also, following the spirit of 

Hjalmarson's deep level theory, we have assumed that all levels produced by the 

central cell part of the potential are "deep" regardless of their energy. 

 

While the form of the bandstructures is clearly important for obtaining our 

numerical results, our formalism is not limited to use with the Vogl et al. theory, 

and any bandstructure model can be used in the formalism.  Different 

bandstructure models will obviously, however, predict different absolute optical 

cross sections. 

 

Since the effects of electron-phonon interaction are excluded from our 

results, the final form of the optical cross section cannot be directly compared or 

contrasted to experimental results.  Our optical cross section curves predict 

relative intensities and thus can not be used to interpret some details of the cross 

section.  However, the values that we predict for the energies at which the cross 

section is a maximum should be correct. 
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We have calculated the optical cross sections for deep levels in selected 

semiconductors and compared and contrasted these results for deep levels in 

the zincblende and diamond materials, in direct gap and indirect gap 

semiconductors, and for impurities whose wavefunctions transform according to 

the A1 and T2 representations of the Td point group.  This allows us to 

categorize, at least qualitatively, the cross sections of various semiconductor-

impurity systems based on these criteria. 
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APPENDIX A: NUMERICAL ANALYSIS 
OF THE OPTICAL CROSS SECTION 

 

In order to use the computer program listed in Appendix B, all of the 

variables must be defined and discussed.  The final form of the optical cross 

section, Eq.(3.40) is 

σ1β(hν) = (constant / ) (V1β
2 / N) 

,n k
∑ k→  | ∑ exp (i k→ • βτi ) | 2  | C k

→
 ,n, 1β |2   x   

     δ ( | E1β |  +  En, k
→

  - hν )  .     (A.1) 

 

 The quantity  exp (i k→ • βτ∑ i ) must be expanded for the impurity 

located at the anion site as well as when it is at the cation site. 

 

 When the impurity is at the anion site, β = 0 and thus 

 

exp (i k→ • βτi ) = 4  .        (A. 2)  

 

 For the impurity located at the cation site, β = 1 and the positions of the 

four atoms, τi, must be considered (for zincblende structures, only). 

 

 The positions of the four atoms nearest to a central anion are given by 

 

τ1  = a
4
  (1,1,1) ,         (A. 3) 

τ2  = a
4
  (-1,1,-1)    ,         (A.4)  

τ3  = a
4
  (-1,-1,1)    ,         (A.5)  
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and 

τ4  = a
4
  (1,-1,-1)       .        (A.6)  

 Thus we have 

k→ τ1 = a
4
  (kx + ky + kz)    ,        (A.7)  

k→ τ2 = a
4
  (-kx + ky - kz)    ,        (A.8) 

k→ τ3 = a
4
  (-kx –ky + kz)    ,        (A.9) 

and 

k→ τ4 = a
4
  (kx  -ky -kz)      ,        (A.10) 

where a is the lattice constant. 

 

Expanding the exponential function, we  have 

| exp i k→  • τ
i
∑ i ) |2 =   exp [ (ia

4
 ) (kx  +ky  +kz)]  

    +  exp[(ia
4

 )(-kx   +ky  -kz)] 

    + exp[(ia
4

 )(-kx  -ky  +kz)] 

    + exp [(ia
4

 ) (kx -ky -kz)]      .   (A.11) 

Combining terms and using the trigonometric identity,  

 

cos   (A  +/-  B)  = cos  A  cos  B   -/+   sin A   sin  B   ,    (A.12) 

 

one  obtains, 
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| exp i k→  • τ
i
∑ i ) |2 =   4 [1 + cos (kx a

2
 ) cos (ky a

2
 ) 

    + cos (kx a
2
 ) cos (kz a

2
 ) 

    + cos (ky a
2
 ) cos (kz a

2
 )] .           (A.13) 

For β = 0, the equation simplifies to 

| exp i k→  • τ
i
∑ i ) |2 = 16         (A.14) 

 

 A numerical technique for calculating generalized state densities was used 

to numerically evaluate the optical cross section.  This technique was originally 

developed by Lehman and Taut (82) and later modified by Hjalmarson (5).  This 

technique calculates a generalized density of states function of the following 

form: 

 

D(E) = 1
N

 _ Fn( k→ ) δ(E – En, k→ )      (A.15) 
,k n
∑

 

It can easily be shown that the optical cross section,   Eq. (3.40)   has   this   form 

with  E  =  |Ei| -  hν    and 

 

Fn( k→ )   =  k→ 2 | exp i k→  • τ
i
∑ i ) |2  C( k→ )2n,iβ       (A.16) 

and 

k→ 2   =   (kx)2 + (ky)2 + (kz)2         (A.17) 

 

Each of the variables comprising the optical cross section equation Eq. (3.40) are 

shown below with its 
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variable name as it appears in the computer model listing in Appendix B. 

 

| exp i k→  • τ
i
∑ i ) |2   =      EX(L,ICNT)     (A.18) 

 

k→ 2    =     RK(ICNT)      (A.19) 

 

C( k→ )n,iβ:  
 C(1,NBAND)  =  G0(1,NBAND) for Al , anion  (A.20) 

 C(2,NBAND)  =  G0(2,NBAND) for T2 , anion  (A.21) 

 C(3,NBAND)  =  G0(1,NBAND) for Al, cation   (A.22) 

 C(4,NBAND)  =  G0(2,NBAND) for T2 , cation   (A.23) 

 

                         El  =    EL       (A.24) 

 

  V1β        =  1 (Eimpurity  -  Ehost    )       (A.25) 

 

  1   =  0.6 for T2 symmetry     (A.26) 

  1   =  0.8 for A1 symmetry     (A.27) 

 En( k→ )   = E(NBAND,ICNT)      (A.28) 

 

 hν - |E1β |   = X(1)        (A.29) 

 hν   =    E1 - E  for the valence band  (A.30) 

 hν   =  E – E1  for the conduction  band    (A.31) 

 hν    = |E – E1|  ≥  0      (A.32) 

    =  | X(1) + EL |       (A.33) 

where X(1) is the energy with respect to the top of valence band. 
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APPENDIX B: OPTICAL CROSS 
SECTION PROGRAM LISTING 

 

C  PROGRAM TO DO OPTICAL CROSS SECTIONS FOR COVALENTLY  

C  BONDED SEMICONDUCTORS. C  IMPLICIT REAL*8(A-H,0-Z) 

C  THIS WAS WRITTEN BY L. RICKS HAUENSTEIN, COMPLETED  

C  JANUARY, 1988 

C  SET UP TO USE NEAREST NEIGHBOR SP3S* BANDSTRUCTURES  

C  FOR ZINCBLENDE AND DIAMOND LATTICE MATERIALS  

 LOGICAL ITRUE,IFLS 

 DIMENSION OCSR(1060),OCSI(1060),X(1060),EN(10),C(4)  

 DIMENSION DENSYM(13),PARAM(13),E1(14),E2(14)  

 DIMENSION EX(2,530), DER(1060,10),DEI(1060,10)  

 DIMENSION DENSR(1060),DENSI(1060),XU(1060)  

 DIMENSION RK(286),G0(2,10),61(2,10),601(4,4,10) 

 COMMON/EANDA/E(10,286),AR(10,286),AI(10,286) 

 COMMON/AKTEST/ITRUE,IFLS  

 COMMON/LATSYM/IPLANE  

 COMMON/PARAMS/PARAM  

 DATA NN,ID1,BL,BETA/0,5,0.8,0./ 

 DATA KPTS,MPTS,MXC,MXIJC,NPTS/186,1060,1,1,1060/  

 DATA F0,VALGAM/0.E+0,0.E+0/ 

 DATA NKGAMX,NBAND,NINCR,EI,EF,NPTS/10,1,1,-13.,-13./  

 DATA IITRU/1/  

 DATA INDEX/0/ 

 DATA ZERO,ONE,TWO,THREE,FOUR/0.,1.,2.,3.,4./  

 DATA PI/3.141592654/  

 IF(BETA.EQ.0.)GO TO 60  

 IF(BL.EQ.0.8)GO TO 80  

 IF(BL.EQ.0 .6)GO TO 95  

60 IF(BL.EQ.0.8)GO TO 70  
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 IF(BL.EQ.0.6)GO TO 90  

70     K = l  

  L=l 

 GO TO 1000  

80     K = 3  

  L=2 

 GO TO 1000  

90     K = 2  

  L=l 

 GO TO 1000  

95     K = 4  

  L = 2  

1000  CONTINUE 

 IF(BL.EQ.0 .8)GO TO 96  

 VL=0.6*(EM-EH)  

 GO TO 97 

96 VL=0.8*(EM-EH) 

97  CONTINUE  

C  

C 

 IPLANE=1000 

 NBM=10 

C  INDEX=0;FCC;;;INDEX=1;SC.  

C  IITRU=0,DOS;;IITRU=1,GENERALIZED DOS. 

 WRITE(6,1) C 

 RNPTS=NPTS 

 EGRID=(EF-EI)/RNPTS 

 WRITE(6,901)NKGAMX,NBAND,NINCR,IITRU,El,EF,EGRID  

C 

 ITRUE=.FALSE. 

 IFLS=.TRUE. 
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 IF(IITRU.GT..5)ITRUE=.TRUE. 

 IF(IITRU.GT..5)IFLS=.FALSE. 

 IF(TRUE)MXC = 4  

C   IF FCC SET IPLANE WITH NEXT LINE 

 IF(INDEX.EQ.0)IPLANE=3*(NKGAMX/2) 

 IF(NPTS.LE.MPTS)GO TO 2 

 WRITE(6,905)NPTS,MPTS 

 CALL EXIT 

 WRITE(6,902)NPTS 

 DO 230 I=1,NPTS 

 X(I)=(FLOAT(I-1)*EGRID+EI) 

 XU(I)=ABS(X(I)-EL)  

230  CONTINUE 

 N1=NKGAMX+1 

 XN1=FLOAT(NKGAMX) 

 KMAX=(Nl*(Nl+1)*(Nl+2))/6 

 WRITE(6,903)KMAX,KPTS 

 IF(KMAX.GT.KPTS)CALL EXIT 

 IF(BETA.EQ.1.)GO TO 55 

 DO 54 10=1,101 

 INDX=(ID-1)*13  

C   READ   TIGHT   BINDING   PARAMETERS 

 READ(24,540)(DENSYM(INDX+II),11=1,9) 

 READ(24,510)(DENSYM(INDX+II),11=10,13) 

54   CONTINUE GO  TO   58 

55   DO   58   ID=1,ID1 

 INDX=(ID-1)*13 

 READ(25,540)(DENSYM(INDX+II),11=1,9) 

 READ(25,510)(DENSYM(INDX+II),11=10,13)  

58 CONTINUE 

 DO 59 11=1,13 
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 INDX=(ID1-1)*13 

 PARAM(II)=DENSYM(INDX+II)  

59  CONTINUE 

 DO 10 IIX=1,N1 

 DO 10 IIY=1,IIX 

 DO 10 IIZ=1,IIY 

 IF(IIX+IIY+IIZ-3.GT.IPLANE)GO TO 10 

 XK=FLOAT(IIX-1)/XN1 

 YX=FLOAT(IIY-1)/XN1 

 ZX=FLOAT(IIZ-1)/XN1 

 XX=PI*XK 

 YY=PI*YK 

 ZZ=PI*ZK 

 ICNT=((IIX**2-1)*IIX)/6+((IIY-1)*IIY)/2+IIZ 

 INCT0=ICNT 

 EX(1,ICNT)=16. 

 EX(2,ICNT)=4.+(2.*COS(XX+ZZ))+(2.*COS(XX+YY) )  

 1+{2 .*COS (YY+ZZ) )+(2 .*COS (YY-ZZ) )  

 2+(2.*COS(XX-YY))+(2.*COS(XX-ZZ)) 

C CALL PAIRSM TO COMPUTE EIGENVALUES AND EIGENVECTORS  

C USED TO CALCULATE THE HOST GREEN'S FUNCTION.  ENERGIES  

C ARE DEVELOPED FOR THE 10 BAND TIGHT BINDING MODEL. ALL  

C CALCULATIONS ARE PERFORMED ASSUMING NN=0, THAT IS, FOR  

C A SINGLE DEFECT. 

 CALL PAIRSM(XK,YK,ZK,EN,NN,G01,G0,G1) 

 IF(ICNTO.EQ.l)VALGAM=EN(4) 

 DO 2000 NBAND=1,NBM 

 C(1,NBAND)=G0(1,NBAND) 

 C(2,NBAND)=G0(2,NBAND) 

 C(3,NBAND)=G0(1,NBAND) 

 C(4,NBAND)=G0(2,NBAND) 
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 E(NBAND,ICNT)=EN(NBAND)-VALGAM 

 IF(IFLS)GO TO 10 

 MXIJC=MXC 

 RK(ICNT) =(XK**2.)+(YK**2.) +(ZK**2.) 

 AR(NBAND,ICNT)=RK(ICNT)*(C(K,NBAND)**2.)*(EX(L,ICNT)) 

 AI(NBAND,ICNT)=ZERO  

6  CONTINUE  

2000  CONTINUE  

10  CONTINUE 

 WRITE(6,340)VALGAM 

 IJC = 1 

 DO 350 I=1,NPTS 

 DENSR(I)=F0 

 DENSI(I)=F0 

 OCSR(I)=F0 

 OCSI(I)=F0  

350  CONTINUE 

 IDUM=IJC  

C SUBROUTINE DENSE5 COMPUTES THE GENERALIZED DOS. 

 CALL DENSE5(DER,DEI,El,EF,EGRID,NKGAMX,NPTS, 

 11,NBM,NINCR,IDUM) 

 DO   360   NBAND=1,NBM,NINCR 

 DO   360   I=1,NPTS 

 DENSR(I)=DENSR(I)+DER(I,NBAND) 

 DENSI(I)=DENSI(I)+DEI(I,NBAND)  

360  CONTINUE 

 RNBM=NBM 

 FMAXP=0. 

 FMAXN=0. 

 DO 361 I=1,NPTS  

C CALCULATE THE OPTICAL CROSS SECTION 
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 OCSR(I)=(DENSR(I)/RNBM)*((VL/(2*EL-XU(I)))**2/XU(I) 

 OCSI (I) = (DENSI (D/RNBM) * ( (VL/ ( 2*EL-XU (I) ) ) **2/XU(I)  

C NORMALIZE BOTH HALVES OF THE CURVE 

 IF(X(I) .LT.0.)GO TO 351 

 IF(OCSR(I).GT.FMAXN)FMAXN=OCSR(I) 

 GO TO 361 

351  IF(OCSR(I).GT.FMAXP)FMAXP=OCSR(I)  

361  CONTINUE 

 DO 352 I=1,NPTS 

 IF(X(I) .LT.0.)GO TO 353 

 OCSR(I)=OCSR(I)FMAXN 

 GO TO 352 

353  OCSR(I)=OCSR(I)FMAXP  

352  CONTINUE 

 PRINT 951,IJC 

 PRINT 952 

 PRINT 950,(X(I) ,DENSR(I) ,DENS(I) ,I=1,NPTS) 

 WRITE(12,931) (X(I) ,OCSR(I) ,I=1,NPTS)  

300  CONTINUE  

310  CONTINUE 

1  FORMAT(IX,'WRITTEN BY L. R. HAUENSTEIN, LAST MODIFIED 

 1ON APRIL 8, 1987. ') 

340  FORMAT(IX,'ZERO OF ENERGY AT1,Ell.4)  

500  FORMAT(10F8.4)  

505  FORMAT(2E10.2)  

510  FORMAT(4F8.4)  

520  FORMAT(5F8.2)  

530  FORMAT(1F8.2)  

540  FORMAT(9F8.4) 

902  FORMAT(IX,'NPTS',14) 

903 FORMAT(IX,'NUMBER OF POINTS IN SC IRRED WEDGE',15, 
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 1/,1X,'MUST BE LESS THAN',15) 

905  FORMAT(' ' ,'NPTS= ',15,' .GT. MPTS = ',15)  

931  FORMAT(2F15.4) 

950  FORMAT(2X,3E16.7) 

951  FORMAT(////2X,'TOTAL DOS FOR IJC=',I4) 

952  FORMAT(2X,'E  ',10X,'DOSR',15X,'DOSI)  

 STOP  

 END 
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